Feature Selection Embedded Robust K-Means

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Penalized K-means: A feature selection method based on Kernel K-means

Article history: Received 11 June 2014 Received in revised form 23 October 2014 Accepted 11 June 2015 Available online 19 June 2015

متن کامل

Unsupervised Feature Selection for the $k$-means Clustering Problem

We present a novel feature selection algorithm for the k-means clustering problem. Our algorithm is randomized and, assuming an accuracy parameter ε ∈ (0, 1), selects and appropriately rescales in an unsupervised manner Θ(k log(k/ε)/ε) features from a dataset of arbitrary dimensions. We prove that, if we run any γ-approximate k-means algorithm (γ ≥ 1) on the features selected using our method, ...

متن کامل

Integrating K-means with Quadratic Programming Feature Selection

Several data mining problems are characterized by data in high dimensions. One of the popular ways to reduce the dimensionality of the data is to perform feature selection, i.e, select a subset of relevant and non-redundant features. Recently, Quadratic Programming Feature Selection (QPFS) has been proposed which formulates the feature selection problem as a quadratic program. It has been shown...

متن کامل

Robust seed selection algorithm for k-means type algorithms

1 Department of Computer Applications, Rayapati Venkata Ranga Rao and Jagarlamudi Chadramouli College of Engineering, Guntur, India 2 Jawaharlal Nehru Technological University, Kakinada, India 3 Department of Statistics, Acharya Nagarjuna University, Guntur, India, 4 Endocrine and Diabetes Centre, Andhra Pradesh, India [email protected], [email protected], [email protected], sridhar...

متن کامل

Embedded Unsupervised Feature Selection

Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3022749