منابع مشابه
Kernel Penalized K-means: A feature selection method based on Kernel K-means
Article history: Received 11 June 2014 Received in revised form 23 October 2014 Accepted 11 June 2015 Available online 19 June 2015
متن کاملUnsupervised Feature Selection for the $k$-means Clustering Problem
We present a novel feature selection algorithm for the k-means clustering problem. Our algorithm is randomized and, assuming an accuracy parameter ε ∈ (0, 1), selects and appropriately rescales in an unsupervised manner Θ(k log(k/ε)/ε) features from a dataset of arbitrary dimensions. We prove that, if we run any γ-approximate k-means algorithm (γ ≥ 1) on the features selected using our method, ...
متن کاملIntegrating K-means with Quadratic Programming Feature Selection
Several data mining problems are characterized by data in high dimensions. One of the popular ways to reduce the dimensionality of the data is to perform feature selection, i.e, select a subset of relevant and non-redundant features. Recently, Quadratic Programming Feature Selection (QPFS) has been proposed which formulates the feature selection problem as a quadratic program. It has been shown...
متن کاملRobust seed selection algorithm for k-means type algorithms
1 Department of Computer Applications, Rayapati Venkata Ranga Rao and Jagarlamudi Chadramouli College of Engineering, Guntur, India 2 Jawaharlal Nehru Technological University, Kakinada, India 3 Department of Statistics, Acharya Nagarjuna University, Guntur, India, 4 Endocrine and Diabetes Centre, Andhra Pradesh, India [email protected], [email protected], [email protected], sridhar...
متن کاملEmbedded Unsupervised Feature Selection
Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3022749